Problem 142: Perfect Square Collection
Find the smallest x + y + z with integers x > y > z > 0 such that x + y, x − y, x + z, x − z, y + z, y − z are all perfect squares.
Test
{{test}}Console output
Find the smallest x + y + z with integers x > y > z > 0 such that x + y, x − y, x + z, x − z, y + z, y − z are all perfect squares.
Use Cmd instead of Ctrl if you're on a Mac.
| g | Focus editor |
| Ctrl-Enter | Run the test with current code |
| Ctrl-Shift-K | Reset the editor |
| Ctrl-Shift-L | Clear console output |
| Ctrl-Shift-X | Show the solution |
| [ | Previous challenge |
| ] | Next challenge |
| T | Back to top page |
| ? | Show this dialog |
| ESC | Hide this dialog |
| Shift-ESC | Blur focus from editor |